Exercise: Finding & Evaluating Journals

Pick one of the following exercises: Find a Journal or Evaluate a Journal

Find a journal

• Pick a topic and audience
 o Sample topic abstracts available on p.2 – or choose your own
• Pick a database/source
 o Free
 ▪ Google Scholar: http://scholar.google.com
 ▪ ERIC – Journals List: https://eric.ed.gov/?journals
 o Paid (search HOLLIS)
 ▪ EBSCO Academic Search Premier: http://nrs.harvard.edu/urn-3:hul.eresource:ebsoaasp
 ▪ ProQuest Social Sciences Premium: https://search-proquest-com.ezp-prod1.hul.harvard.edu/socialsciencepremium
 ▪ Web of Science: http://nrs.harvard.edu/urn-3:hul.eresource:scicitin
• Compile titles of interest
 o Follow key citations
 o Follow key authors
 o Replicate your research process (look at where the research is published)
• Make notes about why you chose those titles

Evaluate a journal

• Pick a title
 • Sample journals available on p.2 – or choose your own
• Review journal information
 • Find the journal’s home page and explore:
 ▪ Mission, Audience, Geographical Scope, Editors
 ▪ Writing Style & Content
 ▪ Availability
 ▪ Process, Timeline
• Review research metrics
 • Pick a database/source and explore:
 ▪ Free
 ▪ Google Metrics: http://scholar.google.com; top left menu: Metrics
 ▪ Journal Guide: https://www.journalguide.com/
 ▪ Paid (search HOLLIS)
 ▪ Cabell’s: www.cabells.com.ezp-prod1.hul.harvard.edu/journals
 ▪ Journal Citation Reports: http://nrs.harvard.edu/urn-3:hul.eresource:jocitrep
 ▪ Web of Science: http://nrs.harvard.edu/urn-3:hul.eresource:scicitin
 • Make notes about “good fit”
Abstract/Article Examples

Article #1
“This study examines key episodes in the history of differentiated science instruction that connect varying conceptions of scientists and nonscientists with practices that shaped students’ educational and career trajectories. Educators enlisted new techniques of testing, curriculum and pedagogy, and psychological research to ascertain and measure indicators of scientific character and talent, foster the development of future scientists, and prepare nonscientists to participate in civil discourse and decision-making about scientific matters. These projects shaped beliefs about who could become a scientist, the characteristics indicative of scientific ability, and the social responsibilities ascribed to specialists and non-specialists. This study sheds light on how educators’ conception of scientific identity developed, how it created and constrained student opportunity, and how it has formulated the relationship between science and the public.”

Article example #2
“Two hundred and four 5- and 6-year-olds who were monolingual English-, bilingual English–Chinese-, or Chinese-speaking children beginning to learn English (2nd-language learners) were compared on phonological awareness and word decoding tasks in English and Chinese. Phonological awareness developed in response to language exposure and instruction but, once established, transferred across languages for both bilinguals and 2nd-language learners. In contrast, decoding ability developed separately for each language as a function of proficiency and instruction in that language and did not transfer to the other language. Therefore, there was no overall effect of bilingualism on learning to read: Performance depended on the structure of the language, proficiency in that language, and instructional experiences with that writing system. These results point to the importance of evaluating the features of the languages and instructional context in which children become biliterate.”

Journal Examples

- American Education Research Journal
- Early Childhood Research Quarterly
- Journal of Educational Psychology
- Studies in Higher Education